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[Warning: These notes focus on deriving appropriate scalings; constant factors of order

unity are not traced in a self-consistent manner.]

We will be dealing with an N-body non-relativistic gravitationally interacting system

(N � 1), which we will refer to as a cluster. For now, assume a single mass species with

component mass m, so the total cluster mass is M = Nm. Further assume a spherically

symmetric cluster of size R.1 The number density is then

n ∼ N

R3
, (1)

the typical velocity dispersion is

vdisp ∼
√
GM

R
=

√
GNm

R
(2)

and the escape velocity is a few times vdisp.

Consider a binary with orbital separation (semi-major axis) a, and corresponding

orbital velocity

vorb ∼
√
Gm

a
. (3)

This binary will gravitationally interact with single stars flying by with typical velocity

vdisp. If the orbital energy −Gm2/(2a) is smaller in magnitude than the kinetic energy of

1There are different definitions for the size (half-mass radius, half-light radius, R200, etc.)

and different radial density profiles (uniform, Spitzer, isothermal, Plummer, King, NFW,

etc.). We will ignore these complications for now.
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the interacting object mv2disp/2, i.e., vorb . vdisp, the so-called soft binary is likely to be

disrupted by the interaction. If, on the other hand, the binary is hard and vorb > vdisp,

then 2 + 1 dynamical interactions will further harden (tighten) the binary (Heggie 1975).

Thus, hard binaries harden while soft binaries are destroyed, with the boundary falling at

ahard ∼
Gm

v2
disp

∼ R

N
. (4)

On average, interactions with stars whose total mass is a few times the mass of the

binary are necessary to harden the binary by one e-folding of semimajor axis (Quinlan

1996). Typically, the lightest of the three interacting objects will be ejected from the

binary; thus, if the interloper is heavier than either of the binary components, it is likely to

substitute in. Such interactions will also cause the binary to sample a thermal eccentricity

distribution, p(e) = 2e.2

Even in the absence of primordial binaries, binaries will generically form through

three-body dynamical interactions (a third body is necessary to carry away the excess

energy in order to create a bound system). In order to form a hard binary, it is necessary to

bring three stars to a distance . ahard from each other. There are ∼ N3 distinct volumes

of radius ahard in the whole cluster of size R. The probability of finding three of N objects

within any of these at a given time is ≈ CN
3 (N−3)

3 ≈ N−6/6, and the probability that at

least one of the small volumes will have 3 objects is ≈ N3 ×N−6/6 ∼ N−3. The timescale

for the objects to be re-arranged between volumes, i.e., the timescale for an object to cross

a given volume while traveling at vdisp, is ∼ (R/N)/vdisp. Therefore, the timescale for a

binary to form is

τbin,form ∼
R

Nvdisp
N3 =

N2R

vdisp
∼ N2R3/2

(GNm)1/2
∼ N2τcross , (5)

2In practice, the neither the energy distribution nor the eccentricity distribution ever

reach the thermal distribution (Geller et al. 2019).
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where τcross ∼ R3/2 (GM)−1/2 is the cluster crossing timescale.

The rate at which interlopers will strongly interact with a given binary, i.e., pass by

within a distance a of the binary, is Γ = nσvdisp, where σ is the interaction cross-section.

For soft binaries, the interaction cross-section is just the geometrical cross-section, σ ∼ πa2.

However, when the binary is hard, the relatively slowly moving interlopers experience

gravitational focusing. Consider the extreme case vorb � vdisp, which allows us to treat

the binary as a point particle of mass 2m. If the interloper approaches the binary from

infinity with impact parameter b, it has an initial angular momentum mvdispb. If the

periapsis distance is a, the velocity at periapsis is very nearly
√

4Gm/a and the angular

momentum there is m
√

4Gma. Thus, conservation of angular momentum dictates that

b ∼ 2
√
Gma/vdisp, and the cross-section for interlopers to get within a distance a of the

binary is πb2 ∼ 4πGma/v2disp. Note that the cross-section scales linearly rather than

quadratically with a once gravitational focusing is included. The interaction timescale is

then

τint = Γ−1 ∼ 1

nσvdisp
∼

vdisp

nGma
. (6)

For equal-mass binaries and interlopers of the same mass, only O(1 ) interactions are needed

to harden the binary by a factor of ∼ 2. Because the last e-folding in hardening the binary

takes the longest time, τint is a reasonable order-of-magnitude approximation for both

the time to the next interaction and for the time it has taken the binary to harden to the

current orbital separation through three-body 2 + 1 interactions.

Because each interaction carries away a significant fraction of the binary’s orbital

energy, the interloper is kicked with a velocity ∼ vorb. Conservation of linear momentum

for the binary–interloper system therefore implies that the binary must get a recoil kick

with a velocity ∼ vorb/2. The escape velocity for a globular cluster is only a factor of a

few greater than the velocity dispersion (e.g., if vdisp = 10 km/s, the escape velocity may
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be . 50 km/s). Thus, recoil kicks will eject the binary once its orbital velocity reaches

vorb ≈ 10vdisp. Since vorb ∼ vdisp at the hard-soft binary, and vorb ∝ a−1/2, the binary

can reach a minimum semimajor axis aeject approximately two orders of magnitude smaller

than ahard before being ejected. Binaries tighter than

aeject ∼ 0.01ahard (7)

can only remain in the cluster if gravitational-wave hardening takes over as the dominant

forcing mechanism before the binary reaches this orbital separation and can be ejected.

Thus, the fate of binaries is determined by a comparison of τint, the Hubble time

τH = 14 Gyr, and the gravitational-wave merger timescale τGW (Peters 1964):

τGW(e = 0) = 1.6 Gyr
( a

0.01 AU

)4( m

M�

)−3

(8)

τGW(e→ 1) = 32 Gyr
( a

0.01 AU

)4( m

M�

)−3

(1− e)7/2 .

Several cases are possible:

• If the total 2+1 hardening and GW emission timescale τint + τGW(e = 0) < τH at

some a between ahard and aeject, the binary will merge inside the cluster through a

sequence of 2 + 1 hardening interactions and gravitational-wave emission.

• Otherwise, if τint + τGW(e = 0) ≥ τH for all a ∈ [aeject, ahard], but τint < τH at

aeject, the binary may either merge inside the cluster if 2 + 1 interactions happen to

drive it to a sufficiently high eccentricity to reduce τGW so that τint + τGW(e) < τH,

or it may be ejected, and may or may not subsequently evolve outside the cluster

depending on its τGW at ejection.

• If neither of these holds, i.e., if τint + τGW(e = 0) ≥ τH for all a ∈ [aeject, ahard]

and τint > τH at aeject the binary will remain in the cluster and stall at the orbital

separation at which τint exceeds τH.
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...

A couple more timescales are worth mentioning. The relaxation timescale is the time

for the cluster to thermalise, i.e., for a typical star to change its velocity by order of its

velocity. That can be achieved by a single strong encounter with an interloper approaching

within a distance ahard. This is just τint(ahard) ∼ v3dispG
−2m−2n−1. It turns out that

relaxation is more efficiently driven by many weak scatterings rather than a few strong

ones, which give rise to a so-called Coulomb logarithm; the relaxation time is a factor of

∼ logN lower than τint(ahard), or ∼ Nτcross/ logN using n ∼ N/R3.

The evaporation timescale (the time for a significant fraction of the objects in the

cluster to be ejected) is ∼ 100 times longer than the relaxation timescale, because < 1%

of stars with a Maxwellian velocity distribution centred on vdisp will exceed the escape

velocity and evaporate from the cluster, and a relaxation time is required to repopulate this

high-velocity tail of the stellar phase space distribution.
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