Cluster dynamics: a primer

Ilya Mandel et al. ilya.mandel@monash.edu (Dated: 11/02/2019)

[Warning: These notes focus on deriving appropriate scalings; constant factors of order unity are not traced in a self-consistent manner.]

We will be dealing with an N-body non-relativistic gravitationally interacting system $(N \gg 1)$, which we will refer to as a *cluster*. For now, assume a single mass species with component mass m, so the total cluster mass is M = Nm. Further assume a spherically symmetric cluster of size R.¹ The number density is then

$$n \sim \frac{N}{R^3} , \qquad (1)$$

the typical velocity dispersion is

$$v_{\rm disp} \sim \sqrt{\frac{GM}{R}} = \sqrt{\frac{GNm}{R}}$$
 (2)

and the escape velocity is a few times v_{disp} .

Consider a binary with orbital separation (semi-major axis) a, and corresponding orbital velocity

$$v_{\rm orb} \sim \sqrt{\frac{Gm}{a}}$$
 (3)

This binary will gravitationally interact with single stars flying by with typical velocity $v_{\rm disp}$. If the orbital energy $-Gm^2/(2a)$ is smaller in magnitude than the kinetic energy of

¹There are different definitions for the size (half-mass radius, half-light radius, R_{200} , etc.) and different radial density profiles (uniform, Spitzer, isothermal, Plummer, King, NFW, etc.). We will ignore these complications for now.

the interacting object $mv_{\rm disp}^2/2$, i.e., $v_{\rm orb} \lesssim v_{\rm disp}$, the so-called *soft* binary is likely to be disrupted by the interaction. If, on the other hand, the binary is *hard* and $v_{\rm orb} > v_{\rm disp}$, then 2 + 1 dynamical interactions will further harden (tighten) the binary (Heggie 1975). Thus, hard binaries harden while soft binaries are destroyed, with the boundary falling at

$$a_{\text{hard}} \sim \frac{Gm}{v_{\text{disp}}^2} \sim \frac{R}{N}$$
 (4)

On average, interactions with stars whose total mass is a few times the mass of the binary are necessary to harden the binary by one e-folding of semimajor axis (Quinlan 1996). Typically, the lightest of the three interacting objects will be ejected from the binary; thus, if the interloper is heavier than either of the binary components, it is likely to substitute in. Such interactions will also cause the binary to sample a thermal eccentricity distribution, $p(e) = 2e^{2}$

Even in the absence of primordial binaries, binaries will generically form through three-body dynamical interactions (a third body is necessary to carry away the excess energy in order to create a bound system). In order to form a hard binary, it is necessary to bring three stars to a distance $\leq a_{\text{hard}}$ from each other. There are $\sim N^3$ distinct volumes of radius a_{hard} in the whole cluster of size R. The probability of finding three of N objects within any of these at a given time is $\approx C_3^N (N^{-3})^3 \approx N^{-6}/6$, and the probability that at least one of the small volumes will have 3 objects is $\approx N^3 \times N^{-6}/6 \sim N^{-3}$. The timescale for the objects to be re-arranged between volumes, i.e., the timescale for an object to cross a given volume while traveling at v_{disp} , is $\sim (R/N)/v_{\text{disp}}$. Therefore, the timescale for a binary to form is

$$\tau_{\rm bin, form} \sim \frac{R}{N v_{\rm disp}} N^3 = \frac{N^2 R}{v_{\rm disp}} \sim \frac{N^2 R^{3/2}}{(GNm)^{1/2}} \sim N^2 \tau_{\rm cross} , \qquad (5)$$

²In practice, the neither the energy distribution nor the eccentricity distribution ever reach the thermal distribution (Geller et al. 2019). where $\tau_{\rm CROSS} \sim R^{3/2} (GM)^{-1/2}$ is the cluster crossing timescale.

The rate at which interlopers will strongly interact with a given binary, i.e., pass by within a distance a of the binary, is $\Gamma = n\sigma v_{\text{disp}}$, where σ is the interaction cross-section. For soft binaries, the interaction cross-section is just the geometrical cross-section, $\sigma \sim \pi a^2$. However, when the binary is hard, the relatively slowly moving interlopers experience gravitational focusing. Consider the extreme case $v_{\text{orb}} \gg v_{\text{disp}}$, which allows us to treat the binary as a point particle of mass 2m. If the interloper approaches the binary from infinity with impact parameter b, it has an initial angular momentum $mv_{\text{disp}}b$. If the periapsis distance is a, the velocity at periapsis is very nearly $\sqrt{4Gm/a}$ and the angular momentum there is $m\sqrt{4Gma}$. Thus, conservation of angular momentum dictates that $b \sim 2\sqrt{Gma}/v_{\text{disp}}$, and the cross-section for interlopers to get within a distance a of the binary is $\pi b^2 \sim 4\pi Gma/v_{\text{disp}}^2$. Note that the cross-section scales linearly rather than quadratically with a once gravitational focusing is included. The interaction timescale is then

$$\tau_{\rm int} = \Gamma^{-1} \sim \frac{1}{n\sigma v_{\rm disp}} \sim \frac{v_{\rm disp}}{nGma}.$$
 (6)

For equal-mass binaries and interlopers of the same mass, only O(1) interactions are needed to harden the binary by a factor of ~ 2. Because the last e-folding in hardening the binary takes the longest time, τ_{int} is a reasonable order-of-magnitude approximation for both the time to the next interaction and for the time it has taken the binary to harden to the current orbital separation through three-body 2 + 1 interactions.

Because each interaction carries away a significant fraction of the binary's orbital energy, the interloper is kicked with a velocity $\sim v_{\rm orb}$. Conservation of linear momentum for the binary–interloper system therefore implies that the binary must get a recoil kick with a velocity $\sim v_{\rm orb}/2$. The escape velocity for a globular cluster is only a factor of a few greater than the velocity dispersion (e.g., if $v_{\rm disp} = 10$ km/s, the escape velocity may be $\lesssim 50$ km/s). Thus, recoil kicks will eject the binary once its orbital velocity reaches $v_{\rm orb} \approx 10 v_{\rm disp}$. Since $v_{\rm orb} \sim v_{\rm disp}$ at the hard-soft binary, and $v_{\rm orb} \propto a^{-1/2}$, the binary can reach a minimum semimajor axis $a_{\rm eject}$ approximately two orders of magnitude smaller than $a_{\rm hard}$ before being ejected. Binaries tighter than

$$a_{\rm eject} \sim 0.01 a_{\rm hard}$$
 (7)

can only remain in the cluster if gravitational-wave hardening takes over as the dominant forcing mechanism before the binary reaches this orbital separation and can be ejected.

Thus, the fate of binaries is determined by a comparison of τ_{int} , the Hubble time $\tau_{\rm H} = 14$ Gyr, and the gravitational-wave merger timescale $\tau_{\rm GW}$ (Peters 1964):

$$\tau_{\rm GW}(e=0) = 1.6 \,\,{\rm Gyr} \left(\frac{a}{0.01 \,\,{\rm AU}}\right)^4 \left(\frac{m}{M_{\odot}}\right)^{-3}$$
(8)
$$\tau_{\rm GW}(e\to1) = 32 \,\,{\rm Gyr} \left(\frac{a}{0.01 \,\,{\rm AU}}\right)^4 \left(\frac{m}{M_{\odot}}\right)^{-3} (1-e)^{7/2} \,.$$

Several cases are possible:

- If the total 2+1 hardening and GW emission timescale $\tau_{int} + \tau_{GW}(e = 0) < \tau_{H}$ at some *a* between a_{hard} and a_{eject} , the binary will merge inside the cluster through a sequence of 2 + 1 hardening interactions and gravitational-wave emission.
- Otherwise, if $\tau_{int} + \tau_{GW}(e = 0) \ge \tau_H$ for all $a \in [a_{eject}, a_{hard}]$, but $\tau_{int} < \tau_H$ at a_{eject} , the binary may either merge inside the cluster if 2 + 1 interactions happen to drive it to a sufficiently high eccentricity to reduce τ_{GW} so that $\tau_{int} + \tau_{GW}(e) < \tau_H$, or it may be ejected, and may or may not subsequently evolve outside the cluster depending on its τ_{GW} at ejection.
- If neither of these holds, i.e., if $\tau_{int} + \tau_{GW}(e = 0) \ge \tau_H$ for all $a \in [a_{eject}, a_{hard}]$ and $\tau_{int} > \tau_H$ at a_{eject} the binary will remain in the cluster and stall at the orbital separation at which τ_{int} exceeds τ_H .

A couple more timescales are worth mentioning. The relaxation timescale is the time for the cluster to thermalise, i.e., for a typical star to change its velocity by order of its velocity. That can be achieved by a single strong encounter with an interloper approaching within a distance a_{hard} . This is just $\tau_{\text{int}}(a_{\text{hard}}) \sim v_{\text{disp}}^3 G^{-2} m^{-2} n^{-1}$. It turns out that relaxation is more efficiently driven by many weak scatterings rather than a few strong ones, which give rise to a so-called Coulomb logarithm; the relaxation time is a factor of $\sim \log N$ lower than $\tau_{\text{int}}(a_{\text{hard}})$, or $\sim N\tau_{\text{cross}}/\log N$ using $n \sim N/R^3$.

The evaporation timescale (the time for a significant fraction of the objects in the cluster to be ejected) is ~ 100 times longer than the relaxation timescale, because < 1% of stars with a Maxwellian velocity distribution centred on v_{disp} will exceed the escape velocity and evaporate from the cluster, and a relaxation time is required to repopulate this high-velocity tail of the stellar phase space distribution.

. . .

REFERENCES

- Geller, A. M., Leigh, N. W. C., Giersz, M., Kremer, K., & Rasio, F. A. 2019, arXiv e-prints, 1902.00019
- Heggie, D. C. 1975, MNRAS, 173, 729
- Peters, P. C. 1964, Physical Review, 136, 1224

Quinlan, G. D. 1996, New Astronomy, 1, 35, arXiv:astro-ph/9601092

This manuscript was prepared with the AAS ${\rm IAT}_{\rm E}\!{\rm X}$ macros v5.2.