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I. RELEVANT OBSERVATIONS

• The spectrum has a peak at 1.1 microns with a half-max half width of ≈ 0.1 microns

• The light curves have a rise time and decay timescale of 1–2 days

• The peak bolometric luminosity is a few 1041 erg/s

II. CONCLUSIONS

Assuming that the spectral peak at 1.1 micron is intrinsically a delta function, and the ∼ 10% broadening is due
to the ejecta velocity v, the upper limit on v is approximately v ∼ 0.1c.

Using this value of velocity and the light curve rise and decay time of 1–2 days or tLC ∼ 105 seconds (see Eq. 5)
allows us to solve for κM . The ejecta mass is then

M ∼ 5× 10−3M�

(
0.1 g cm−2

κ

)
.

As much as
GM2

NS

30 km ∼ 1053 erg of binding energy were deposited in the merger. However, for the values of ejecta

mass and velocity given above, only E0 = 0.5Mv2 ∼ 5×1049 erg of energy are in the ejecta (the rest are, presumably,
in neutrinos, in the rotational energy of the post-merger remnant, etc.).

Of course, the ejecta mass could be a factor of 10 larger/smaller if κ is a factor of 10 smaller/larger than assumed.
However, all models appear to require continued energy input through radioactive decay. The peak luminosity for
diffusion through an expanding medium (Eq. 6) is far smaller than observed for any reasonable value of κ:

L ∼ R0E0c

κM
∼ 30 km v2c

κ
∼ 1037erg s−1

(
0.1 g cm−2

κ

)
.

The total heating output of radioactive decay ε can be parametrized as ε ≡ fMc2, with f given by (Eq. 7):

f ∼ 10−6 Lpeak

1041erg s−1

0.005M�

M
.

III. GENERAL BACK-OF-THE-ENVELOPE THEORY

We will follow Arnett’s classical papers from the early 1980s in assuming a one-zone spherical model with constant
temperature T , density ρ, and opacity κ in an expanding cloud of mass M of radius R, following an initial injection
of energy E0 when the gas cloud has radius R0. The cloud expands homologously, with velocity v =

√
2E0/M (i.e.,

most of the energy goes into the kinetic motion of the cloud), so that the cloud’s volume is V = 4/3πR3, where R = vt
(in particular, R0 = vt0). Within the cloud, the radiation energy density dominates the gas energy, so the internal
energy density is u = aT 4 and radiation pressure is p = a/3T 4 = u/3.

Energy conservation yields

Ė = −pV̇ + ε̇− L, (1)

where ε̇ is the rate of radioactive heating and L is the luminosity. We simplify the diffusion equation

L(r) = −4πr2 c

3κρ

∂u(r)

∂r
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as

L ≈ 4πR2 c

3κρ

u

R
=

cV 2u

κMR2
. (2)

If ε̇ = 0, then Ė + pV̇ +L = 0 and we can substitute L from above along with Ė = uV̇ + V u̇, with V̇ = 3V v/R, to
obtain

u̇

u
= −4

1

t
− 4πvc

3κM
t. (3)

This can be integrated to yield

u(t) = u0(t/t0)−4 exp [− 2πcv

3κM
t2], (4)

where u0 = u(t0) = E0/V0.
Therefore, the light curve decay timescale is

tLC ∼
√
κM

cv
. (5)

Note that this is the geometric mean of the diffusion timescale tdiff = R0/(cτ) ∼ Mκ
cR0

[where τ ∼ κρR0 is the optical

depth of the initial cloud] and the expansion timescale texp = R0/v, as the photons diffuse through an expanding
medium with changing optical depth. The decay timescale tLC is also roughly the time after the merger when the
light curve reaches the peak, which can be estimated by determining the time required for the cloud to reach a radius
R from which photons can diffuse on a comparable timescale, tdiff = texp.

The luminosity at time tLC is approximately

LLC ∼
cR4

LC

κM
uLC ∼

cR4
0

κM

E0

V0
∼ cR0E0

κM
. (6)

This is a rather small number: if the initially injected energy is of order the gravitational binding energy of the gas
cloud, E0 ∼ GMBHM

R0
, then the peak diffusion-limited luminosity of an expanding gas cloud is of order the Eddington

luminosity:

LLC ∼
cGMBH

κ
.

The way to get a larger luminosity is to increase the energy production. At peak luminosity, dL/dt = 0; this implies
Lpeak = ε̇(tpeak). Assuming that the luminosity reaches its peak value long after the peak of the r-process radioactive
decay rate (generally true because the luminosity is still diffusion-limited when radioactive decay peaks), the peak
luminosity will be observed at time t ∼ tLC:

Lpeak ∼
ε

tLC
, (7)

where ε is the total radioactive heating, which can be parametrized as ε ≡ fMc2.

Later addition (see, e.g., Waxman et al., 2017): Following the peak, the luminosity will initially decay, roughly
following ε̇(t), as the ejecta become optically thin and the diffusion time scale grows shorter. Although the energy
injection rate from an individual radioactive source decays exponentially, the mixing of multiple species can lead
to a power-law decay of injected energy. For example, if the radioactive decay time scales are distributed following
p(tdecay) ∝ t−2

decay, then

ε̇(t) ∝
∫ tdecay,max

tdecay,min

p(tdecay) exp(−t/tdecay)dt ∝ 1/t (8)

for tdecay,min � t� tdecay,max.
If the bulk of the energy is initially deposited into the kinetic energy of electrons, the L ∼ ε̇ behaviour will change

once electrons can escape from the gas cloud without depositing their energy to be re-processed into photons. The
“optical thickness” for electrons is τe ≈ κeρR ≈Mκe/v

2/t2. When τe � 1, only a fraction τe of the entire radioactive
energy input would be converted into photons, so the luminosity would follow τeε̇(t); e.g., for ε̇(t) ∝ 1/t, the luminosity
would scale as 1/t3.


