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Pretend for simplicity that there is spherically symmetric accretion and spherically symmetric radiative energy
outflow. [This is obviously a simplifying assumption, and we will discuss alternatives later.)

Consider a thin spherical shell at radius r of mass dm around a central object of mass M (which could be a star,
a black hole, etc.). As a limiting case of accretion, this shell is in hydrostatic equilibrium. In that case, the force of
gravity is
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The radiation pressure force is given by the rate of momentum deposition into the shell. The momentum per unit
time flowing through the shell in radiation is L/¢, where L is the luminosity and c¢ is the speed of light (recall that
photon energy is pc, where p is momentum). However, only a fraction of photons will interact with the material in
the shell. That fraction is the net scattering cross-section of all baryons in the shell, kdm (recall that the opacity k
has units of area per unit mass) divided by the total shell surface area 47r2. Thus, the outward radiation pressure
force on the shell is
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In hydrostatic equilibrium, F = F,. Solving for L, we find a maximum (Eddington) luminosity
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The actual value of k depends on what is responsible for the opacity. For example, in the outer regions of massive
stars, it is generally ionized hydrogen; scattering is due to the electrons with Thomson cross-section o7, while the
mass is set by protons, so k = or/m,. In that case,

M erg [ M
Liga ~32x10* ( — | Lo =~ 1038 == — ). 4
pad * (MG) © s \ Mo )

Lggq =

Note that 103° erg s~! is the lower limit for an X-ray binary to be defined as an ultra-luminous X-ray source (ULX) —
i.e., objects above this limit must either be more massive than the usual stellar-mass black holes, or must be radiation
at super-Eddington luminosities (NS ULXs).

However, quite different values of opacity, and hence Eddington luminosity, are possible. E.g., in low-mass cool
stars, opacity is given by Kramer’s law, x oc pT~3"5, while in very hot environments, positron-electron plasma can
be created, with twice the scattering particles at ~ 1/1000 of the mass, i.e., the Eddington limit will be a factor of
~ 2000 lower. The most important bit for us is that the luminosity scales linearly with the mass.

Two examples:

1. Most massive stars asymptote to a fixed lifetime. Stars must get rid of 0.007m,c? of energy per hydrogen atom
when fusing hydrogen into helium on the main sequence; in practice, not all hydrogen is fused, so approximate this
as 0.002Mc2. Assume the star cannot go above Eddington luminosity (actually, it can do this in regions within the
star, if it’s able to transport energy efficiently through convection, and in fact, reaching the Eddington limit can be
thought of as demanding convection). Then the maximum lifetime is
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2. Eddington-limited black holes double in size on a fixed timescale. If you imagine that black holes accrete from a
thin disk which efficiently cools through radiation, then the net energy radiated per unit mass is the specific energy at
the stellar surface (for a neutron star) or the innermost stable circular orbit (ISCO) for a black hole. [We will discuss
the validity of this another time, when we talk about accretion disk physics, including advection dominated accretion
flows.] In other words, E = eMc?. For a Schwarzschild black hole, the ISCO is at r = 6GMc~2, so the specific energy
there (ignoring GR) is GM/(2r) = (1/12)c%. 1t is therefore common to use € ~ 0.1. Then we can write

L _ M\ M,
MEdd = :;dd ~ ]_0 B () TS (6)




Thus, black holes double their mass in 100 million years when maximally accreting, regardless of their actual mass.
Note that this presents a challenge for forming massive black holes from light seeds at high redshift, as observed via
distant quasars: it would take 25 doubling times, or 2.5 billion years, to grow a 30 solar mass black hole into a 10° M,
black hole, which is much longer than the age of the Universe at z 2 7, when quasars are already observed.

Note that there are really two Eddington limits: the Eddington limit for mass accretion, and the Eddington limit
for luminosity. The first is easy to overcome: the growth rate of a black hole during a stellar collapse is many orders
of magnitude super-Eddington. Excess energy can be transported out through neutrinos rather than photons (though
there is eventually a neutrino Eddington limit), or carried away mechanically by winds, or advected inside the horizon
altogether. The second is more challenging to overcome, but possible: inflows and outflows are not spherical, and
funnelling in material in one direction while collimating the outflows in another (perhaps with the aid of magnetic
fields) is one possibility (in general, if outflows are collimated, it may be hard to measure the total output luminosity,
only its isotropic equivalent); porosity is another aspect of this.



