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Consider a donor of mass M and radius R and an inspiralling companion of
mass m and radius r (we will assume m ≪ M for simplicity, though this is not
strictly necessarily and will only lead to order unity errors when m ∼ M , and
of course r ≪ R). The orbital energy is E ∼ GMm/R. The donor’s average
density (we will ignore factors of order unity throughout) is ⟨ρd⟩ ≡ M/R3; the
companion’s average density is ⟨ρc⟩ ≡ m/r3; and ρ is the density at the current
location of the companion.

The companion’s Keplerian orbital velocity is v =
√
GM/R and the dynam-

ical timescale (orbital period) is τdyn = R/v. The Bondi-Hoyle radius of the
companion is rB ∼ Gm/v2 = R(m/M) (we are assuming super-sonic motion
here, v > cs, where cs is the speed of sound). If rB > r, i.e., R > (M/m)r (this
is the case, e.g., for compact-object companions), Bondi-Hoyle drag dominates,
and the effective cross-section is σ ∼ r2B ∼ R2(m/M)2. On the other hand, if
r > rB , ram-pressure drag dominates, and the effective cross-section is σ ∼ r2.

The mass-accretion rate is ṁ = CAρvσ, where CA is the dimensionless accre-
tion coefficient. The drag force is F = CDρv2σ, where CD is the dimensionless
drag coefficient. The energy dissipation rate is then Ė = −CDρv3σ. Numerical
experiments show that, unlike CA, the drag coefficient CD is almost always of
order unity, so we will generally ignore it below.

The inspiral timescale is τinsp ≡ E/|Ė|. Thus,
τinsp
τdyn

∼ GMm
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=

m
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In the Bondi-Hoyle regime, σ ∼ R2(m/M)2, so
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As an example, consider the inspiral of a neutron star into the convective en-
velope of a red supergiant en route to forming a double neutron star system.
In this case, the envelope’s density is not too far off from uniform, so ⟨ρd⟩/ρ is
perhaps only a few, as is M/m – so the inspiral will proceed over a few orbits,
which matches the findings of numerical simulations.

In the ram-pressure regime, σ ∼ r2, so
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As an example, consider the engulfment of a planet by a star with a radiative
envelope. In the outermost layers of the star, the density is very low, ρ ≪ ⟨ρc⟩,
so the inspiral timescale is very long – the orbit is almost circular. However, the
density rapidly increases inward. Since r ≪ R, long before the tidal disruption
of the planet at ⟨ρc⟩ ∼ ρ, the inspiral timescale drops below the dynamical
timescale once ρ ∼ ⟨ρc⟩(r/R). At this point, the orbital motion stalls, and the
planet transitions to a largely radial infall with a terminal velocity determined
by equating the gravitational acceleration to drag, GM/R2 ∼ r2v2termρ. (Of
course, the planet may ablate even sooner: the typical energy release by the
time the planet moves to radius x ≪ R is ∆E ∼ GMm/x, and if this energy is
primarily deposited into the planet rather than the star, it can ablate once the
deposited energy exceeds the planet’s binding energy, ∆E > Gm2/r.)

Note that with the drag and accretion coefficients included,

dE
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m
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so E0/E = (m/m0)
CD/CA . E.g., for CD = CA = 1, the energy decay timescale

is the same as the mass growth timescale. If we believe that neutron stars can
spiral in by several orders of magnitude within a common envelope while barely
changing their mass, it must be the case that CA ≪ CD.

It’s worth briefly commenting on our assumption of supersonic motion. The
sound speed is approximately c2s ∼ P/ρ. Because the donor is in hydrostatic
equilibrium, dP/dr = GMρ/R2. Thus, on average, equating dP/dr ∼ P/R, we
would conclude that c2s ∼ P/ρ ∼ GM/R ∼ v2 – i.e., the sound speed is of the
order of the Keplerian orbital velocity and our calculation is roughly accurate.
More precisely, the validity of this assumption depends on the details of the
envelope structure.
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